Journal of Time Series Analysis

On the Sensitivity of Granger Causality to Errors‐In‐Variables, Linear Transformations and Subsampling

Journal Article

This article studies the sensitivity of Granger causality to the addition of noise, the introduction of subsampling, and the application of causal invertible filters to weakly stationary processes. Using canonical spectral factors and Wold decompositions, we give general conditions under which additive noise or filtering distorts Granger‐causal properties by inducing (spurious) Granger causality, as well as conditions under which it does not. For the errors‐in‐variables case, we give a continuity result, which implies that: a ‘small’ noise‐to‐signal ratio entails ‘small’ distortions in Granger causality. On filtering, we give general necessary and sufficient conditions under which ‘spurious’ causal relations between (vector) time series are not induced by linear transformations of the variables involved. This also yields transformations (or filters) which can eliminate Granger causality from one vector to another one. In a number of cases, we clarify results in the existing literature, with a number of calculations streamlining some existing approaches.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.