Risk Analysis

Rethinking Social Amplification of Risk: Social Media and Zika in Three Languages

Journal Article

  • Author(s): Christopher D. Wirz, Michael A. Xenos, Dominique Brossard, Dietram Scheufele, Jennifer H. Chung, Luisa Massarani
  • Article first published online: 08 Nov 2018
  • DOI: 10.1111/risa.13228
  • Read on Online Library
  • Subscribe to Journal

Abstract

Using the Zika outbreak as a context of inquiry, this study examines how assigning blame on social media relates to the social amplification of risk framework (SARF). Past research has discussed the relationship between the SARF and traditional mass media, but the role of social media platforms in amplification or attenuation of risk perceptions remains understudied. Moreover, the communication and perceptions of Zika‐related risk are not limited to discussions in English. To capture conversations in languages spoken by affected countries, this study combines data in English, Spanish, and Portuguese. To better understand the assignment of blame and perceptions of risk in new media environments, we looked at three different facets of conversations surrounding Zika on Facebook and Twitter: the prominence of blame in each language, how specific groups were discussed throughout the Zika outbreak, and the sentiment expressed about genetically engineered (GE) mosquitoes. We combined machine learning with human coding to analyze public discourse in all three languages. We found differences between languages and platforms in the amount of blame assigned to different groups. We also found more negative sentiments expressed about GE mosquitoes on Facebook than on Twitter. These meaningful differences only emerge from analyses across the three different languages and platforms, pointing to the importance of multilingual approaches for risk communication research. Specific recommendations for outbreak and risk communication practitioners are also discussed.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.