Risk Analysis

Retweeting Risk Communication: The Role of Threat and Efficacy

Journal Article

  • Author(s): Sarah C. Vos, Jeannette Sutton, Yue Yu, Scott Leo Renshaw, Michele K. Olson, C. Ben Gibson, Carter T. Butts
  • Article first published online: 06 Aug 2018
  • DOI: 10.1111/risa.13140
  • Read on Online Library
  • Subscribe to Journal


Social media platforms like Twitter and Facebook provide risk communicators with the opportunity to quickly reach their constituents at the time of an emerging infectious disease. On these platforms, messages gain exposure through message passing (called “sharing” on Facebook and “retweeting” on Twitter). This raises the question of how to optimize risk messages for diffusion across networks and, as a result, increase message exposure. In this study we add to this growing body of research by identifying message‐level strategies to increase message passing during high‐ambiguity events. In addition, we draw on the extended parallel process model to examine how threat and efficacy information influence the passing of Zika risk messages. In August 2016, we collected 1,409 Twitter messages about Zika sent by U.S. public health agencies’ accounts. Using content analysis methods, we identified intrinsic message features and then analyzed the influence of those features, the account sending the message, the network surrounding the account, and the saliency of Zika as a topic, using negative binomial regression. The results suggest that severity and efficacy information increase how frequently messages get passed on to others. Drawing on the results of this study, previous research on message passing, and diffusion theories, we identify a framework for risk communication on social media. This framework includes four key variables that influence message passing and identifies a core set of message strategies, including message timing, to increase exposure to risk messages on social media during high‐ambiguity events.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.