British Journal of Mathematical and Statistical Psychology

A general Bayesian multilevel multidimensional IRT model for locally dependent data

Journal Article

Many item response theory (IRT) models take a multidimensional perspective to deal with sources that induce local item dependence (LID), with these models often making an orthogonal assumption about the dimensional structure of the data. One reason for this assumption is because of the indeterminacy issue in estimating the correlations among the dimensions in structures often specified to deal with sources of LID (e.g., bifactor and two‐tier structures), and the assumption usually goes untested. Unfortunately, the mere fact that assessing these correlations is a challenge for some estimation methods does not mean that data seen in practice support such orthogonal structure. In this paper, a Bayesian multilevel multidimensional IRT model for locally dependent data is presented. This model can test whether item response data violate the orthogonal assumption that many IRT models make about the dimensional structure of the data when addressing sources of LID, and this test is carried out at the dimensional level while accounting for sampling clusters. Simulations show that the model presented is effective at carrying out this task. The utility of the model is also illustrated on an empirical data set.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.