Australian & New Zealand Journal of Statistics

Hybrid pairwise‐likelihood estimation methods for incomplete longitudinal binary data

Journal Article

Summary

In longitudinal data, missing observations occur commonly with incomplete responses and covariates. Missing data can have a ‘missing not at random’ mechanism, a non‐monotone missing pattern, and moreover response and covariates can be missing not simultaneously. To avoid complexities in both modelling and computation, a two‐stage estimation method and a pairwise‐likelihood method are proposed. The two‐stage estimation method enjoys simplicities in computation, but incurs more severe efficiency loss. On the other hand, the pairwise approach leads to estimators with better efficiency, but can be cumbersome in computation. In this paper, we develop a compromise method using a hybrid pairwise‐likelihood framework. Our proposed approach has better efficiency than the two‐stage method, but its computational cost is still reasonable compared to the pairwise approach. The performance of the methods is evaluated empirically by means of simulation studies. Our methods are used to analyse longitudinal data obtained from the National Population Health Study.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.