Risk Analysis

Resilience Analysis of a Remote Offshore Oil and Gas Facility for a Potential Hydrocarbon Release

Journal Article


Resilience is the capability of a system to adjust its functionality during a disturbance or perturbation. The present work attempts to quantify resilience as a function of reliability, vulnerability, and maintainability. The approach assesses proactive and reactive defense mechanisms along with operational factors to respond to unwanted disturbances and perturbation. This article employs a Bayesian network format to build a resilience model. The application of the model is tested on hydrocarbon‐release scenarios during an offloading operation in a remote and harsh environment. The model identifies requirements for robust recovery and adaptability during an unplanned scenario related to a hydrocarbon release. This study attempts to relate the resilience capacity of a system to the system's absorptive, adaptive, and restorative capacities. These factors influence predisaster and postdisaster strategies that can be mapped to enhance the resilience of the system.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.