Risk Analysis

Public Response to a Near‐Miss Nuclear Accident Scenario Varying in Causal Attributions and Outcome Uncertainty

Journal Article

Abstract

Many studies have investigated public reactions to nuclear accidents. However, few studies focused on more common events when a serious accident could have happened but did not. This study evaluated public response (emotional, cognitive, and behavioral) over three phases of a near‐miss nuclear accident. Simulating a loss‐of‐coolant accident (LOCA) scenario, we manipulated (1) attribution for the initial cause of the incident (software failure vs. cyber terrorist attack vs. earthquake), (2) attribution for halting the incident (fail‐safe system design vs. an intervention by an individual expert vs. a chance coincidence), and (3) level of uncertainty (certain vs. uncertain) about risk of a future radiation leak after the LOCA is halted. A total of 773 respondents were sampled using a 3 × 3 × 2 between‐subjects design. Results from both MANCOVA and structural equation modeling (SEM) indicate that respondents experienced more negative affect, perceived more risk, and expressed more avoidance behavioral intention when the near‐miss event was initiated by an external attributed source (e.g., earthquake) compared to an internally attributed source (e.g., software failure). Similarly, respondents also indicated greater negative affect, perceived risk, and avoidance behavioral intentions when the future impact of the near‐miss incident on people and the environment remained uncertain. Results from SEM analyses also suggested that negative affect predicted risk perception, and both predicted avoidance behavior. Affect, risk perception, and avoidance behavior demonstrated high stability (i.e., reliability) from one phase to the next.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.