Journal of the Royal Statistical Society: Series B (Statistical Methodology)

Detecting and dating structural breaks in functional data without dimension reduction

Journal Article


Methodology is proposed to uncover structural breaks in functional data that is ‘fully functional’ in the sense that it does not rely on dimension reduction techniques. A thorough asymptotic theory is developed for a fully functional break detection procedure as well as for a break date estimator, assuming a fixed break size and a shrinking break size. The latter result is utilized to derive confidence intervals for the unknown break date. The main results highlight that the fully functional procedures perform best under conditions when analogous estimators based on functional principal component analysis are at their worst, namely when the feature of interest is orthogonal to the leading principal components of the data. The theoretical findings are confirmed by means of a Monte Carlo simulation study in finite samples. An application to annual temperature curves illustrates the practical relevance of the procedures proposed.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.