Risk Analysis

Setting Priorities in Behavioral Interventions: An Application to Reducing Phishing Risk

Journal Article

Abstract

Phishing risk is a growing area of concern for corporations, governments, and individuals. Given the evidence that users vary widely in their vulnerability to phishing attacks, we demonstrate an approach for assessing the benefits and costs of interventions that target the most vulnerable users. Our approach uses Monte Carlo simulation to (1) identify which users were most vulnerable, in signal detection theory terms; (2) assess the proportion of system‐level risk attributable to the most vulnerable users; (3) estimate the monetary benefit and cost of behavioral interventions targeting different vulnerability levels; and (4) evaluate the sensitivity of these results to whether the attacks involve random or spear phishing. Using parameter estimates from previous research, we find that the most vulnerable users were less cautious and less able to distinguish between phishing and legitimate emails (positive response bias and low sensitivity, in signal detection theory terms). They also accounted for a large share of phishing risk for both random and spear phishing attacks. Under these conditions, our analysis estimates much greater net benefit for behavioral interventions that target these vulnerable users. Within the range of the model's assumptions, there was generally net benefit even for the least vulnerable users. However, the differences in the return on investment for interventions with users with different degrees of vulnerability indicate the importance of measuring that performance, and letting it guide interventions. This study suggests that interventions to reduce response bias, rather than to increase sensitivity, have greater net benefit.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.