International Statistical Review

What Does Objective Mean in a Dirichlet‐multinomial Process?

Journal Article

Summary

The Dirichlet‐multinomial process can be seen as the generalisation of the binomial model with beta prior distribution when the number of categories is larger than two. In such a scenario, setting informative prior distributions when the number of categories is great becomes difficult, so the need for an objective approach arises. However, what does objective mean in the Dirichlet‐multinomial process? To deal with this question, we study the sensitivity of the posterior distribution to the choice of an objective Dirichlet prior from those presented in the available literature. We illustrate the impact of the selection of the prior distribution in several scenarios and discuss the most sensible ones.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.