Mathematical Logic Quarterly

Ternary Operations as Primitive Notions for Constructive Plane Geometry IV

Journal Article


In this paper we provide a quantifier‐free constructive axiomatization for Euclidean planes in a first‐order language with only ternary operation symbols and three constant symbols (to be interpreted as ‘points’). We also determine the algorithmic theories of some ‘naturally occurring’ plane geometries.

Mathematics Subject Classification: 03F65, 51M05, 51M15, 03B30.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.