Quality and Reliability Engineering International

Forecasting reliability growth

Journal Article


This paper describes a method for estimating and forecasting reliability from attribute data, using the binomial model, when reliability requirements are very high and test data are limited. Integer data—specifically, numbers of failures — are converted into non‐integer data. The rationale is that when engineering corrective action for a failure is implemented, the probability of recurrence of that failure is reduced; therefore, such failures should not be carried as full failures in subsequent reliability estimates. The reduced failure value for each failure mode is the upper limit on the probability of failure based on the number of successes after engineering corrective action has been implemented. Each failure value is less than one and diminishes as test programme successes continue. These numbers replace the integral numbers (of failures) in the binomial estimate.

This method of reliability estimation was applied to attribute data from the life history of a previously tested system, and a reliability growth equation was fitted. It was then ‘calibrated’ for a current similar system's ultimate reliability requirements to provide a model for reliability growth over its entire life‐cycle. By comparing current estimates of reliability with the expected value computed from the model, the forecast was obtained by extrapolation.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.