Journal of Time Series Analysis

EFFICIENT ESTIMATION OF NONSTATIONARY TIME SERIES REGRESSION

Journal Article

Abstract. A multiple time series regression model with trending regressors has residuals that are believed to be not only serially dependent but nonstationary. Assuming the residuals can be decomposed as a stationary autoregressive process of known order multiplied by an unknown time‐varying scale factor, we propose estimators of the regression coefficients and show them to be as efficient as estimators based on known scale factors. Our estimators have features in common with adaptive estimators proposed by Carroll (1982) and Hannan (1963) for different regression problems, involving respectively independent residuals with heteroskedasticity of unknown type, and stationary residuals with unknown serial dependence structure.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.