Journal of Time Series Analysis


Journal Article

Abstract. In this paper, we shall consider the case where a stationary vector process {Xt} belongs to one of two categories described by two hypotheses π1 and π2. These hypotheses specify that {Xt} has spectral density matrices f(Λ) and g(Λ) under π1 and π2, respectively. Although Gaussianity of {Xt} is not assumed, we can formally make the Gaussian likelihood ratio (GLR) based on X(1),…X(T). Then an approximation I(f:g) of the GLR is given in terms of f(Λ) and g(Λ). If f(Λ) and g(Λ) are known, we can use I(f:g) as a classification statistic. It is shown that I(f:g) is a consistent classification criterion in the sense that the misclassification probabilities converge to zero as T→∝. When g is contiguous to f, we discuss non‐Gaussian robustness of I(f:g). A sufficient condition for the non‐Gaussian robustness will be given. Also a numerical example will be given.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.