Networks

Identifying independence in bayesian networks

Journal Article

Abstract

An important feature of Bayesian networks is that they facilitate explicit encoding of information about independencies in the domain, information that is indispensable for efficient inferencing. This article characterizes all independence assertions that logically follow from the topology of a network and develops a linear time algorithm that identifies these assertions. The algorithm's correctness is based on the soundness of a graphical criterion, called d‐separation, and its optimality stems from the completeness of d‐separation. An enhanced version of d‐separation, called D‐separation, is defined, extending the algorithm to networks that encode functional dependencies. Finally, the algorithm is shown to work for a broad class of nonprobabilistic independencies.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.