Canadian Journal of Statistics

Bayesian incorporation of repeated measurements in logistic discrimination

Journal Article

Abstract

A common problem in medical statistics is the discrimination between two groups on the basis of diagnostic information. Information on patient characteristics is used to classify individuals into one of two groups: diseased or disease‐free. This classification is often with respect to a particular disease. This discrimination has two probabilistic components: (1) the discrimination is not without error, and (2) in many cases the a priori chance of disease can be estimated. Logistic models (Cox 1970; Anderson 1972) provide methods for incorporating both of these components. The a posteriori probability of disease may be estimated for a patient on the basis of both current measurement of patient characteristics and prior information. The parameters of the logistic model may be estimated on the basis of a calibration trial. In practice, not one but several sets of measurements of one characteristic of the patient may be made on a questionable case. These measurements typically are correlated; they are far from independent. How should these correlated measurements be used? This paper presents a method for incorporating several sets of measurements in the classification of a case.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.