Canadian Journal of Statistics

Uniform stochastic orderings and total positivity

Journal Article

Abstract

Uniform stochastic orderings of random variables are expressed as total positivity (TP) of density, survival, and distribution functions. The orderings are called uniform because each is a stochastic order that persists under conditioning to a family of intervals—for example, the family consisting of all intervals of the form (‐∞,x]. This paper is concerned with the preservation of uniform stochastic ordering under convolution, mixing, and the formation of coherent systems. A general TP2 result involving preservation of total positivity under integration is presented and applied to convolutions and mixtures of distribution and survival functions. Log‐concavity of distribution, survival, and density functions characterizes distributions that preserve the various orderings under convolution. Likewise, distributions that preserve orderings under mixing are characterized by TP2 distribution and survival functions.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.