Canadian Journal of Statistics

Tests for the multivariate two‐sample problem based on empirical probability measures

Journal Article

Abstract

Nonparametric tests are proposed for the equality of two unknown p‐variate distributions. Empirical probability measures are defined from samples from the two distributions and used to construct test statistics as the supremum of the absolute differences between empirical probabilities, the supremum being taken over all possible events. The test statistics are truly multivariate in not requiring the artificial ranking of multivariate observations, and they are distribution‐free in the general p‐variate case. Asymptotic null distributions are obtained. Powers of the proposed tests and a competitor are examined by Monte Carlo techniques.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.