Canadian Journal of Statistics

Bootstrap adaptive estimation: The trimmed‐mean example

Journal Article

Abstract

We consider the problem of choosing among a class of possible estimators by selecting the estimator with the smallest bootstrap estimate of finite sample variance. This is an alternative to using cross‐validation to choose an estimator adaptively. The problem of a confidence interval based on such an adaptive estimator is considered. We illustrate the ideas by applying the method to the problem of choosing the trimming proportion of an adaptive trimmed mean. It is shown that a bootstrap adaptive trimmed mean is asymptotically normal with an asymptotic variance equal to the smallest among trimmed means. The asymptotic coverage probability of a bootstrap confidence interval based on such adaptive estimators is shown to have the nominal level. The intervals based on the asymptotic normality of the estimator share the same asymptotic result, but have poor small‐sample properties compared to the bootstrap intervals. A small‐sample simulation demonstrates that bootstrap adaptive trimmed means adapt themselves rather well even for samples of size 10.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.