Canadian Journal of Statistics

Nonparametric smoothing in the analysis of air pollution and respiratory illness

Journal Article

Abstract

While most of epidemiology is observational, rather than experimental, the culture of epidemiology is still derived from agricultural experiments, rather than other observational fields, such as astronomy or economics. The mismatch is made greater as focus has turned to continue risk factors, multifactorial outcomes, and outcomes with large variation unexplainable by available risk factors. The analysis of such data is often viewed as hypothesis testing with statistical control replacing randomization. However, such approaches often test restricted forms of the hypothesis being investigated, such as the hypothesis of a linear association, when there is no prior empirical or theoretical reason to believe that if an association exists, it is linear. In combination with the large nonstochastic sources of error in such observational studies, this suggests the more flexible alternative of exploring the association. Conclusions on the possible causal nature of any discovered association will rest on the coherence and consistency of multiple studies. Nonparametric smoothing in general, and generalized additive models in particular, represent an attractive approach to such problems. This is illustrated using data examining the relationship between particulate air pollution and daily mortality in Birmingham, Alabama; between particulate air pollution, ozone, and SO2 and daily hospital admissions for respiratory illness in Philadelphia; and between ozone and particulate air pollution and coughing episodes in children in six eastern U.S. cities. The results indicate that airborne particles and ozone are associated with adverse health outcomes at very low concentrations, and that there are likely no thresholds for these relationships.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.