Statistics in Medicine

Restriction as a method for reducing bias in the estimation of direct effects

Journal Article

  • Author(s): Marshall M. Joffe, Graham A. Colditz
  • Article first published online: 21 Dec 1998
  • DOI: 10.1002/(SICI)1097-0258(19981015)17:19<2233::AID-SIM922>3.0.CO;2-0
  • Read on Online Library
  • Subscribe to Journal


The direct effect of a treatment on some outcome is that part of the treatment's effect not referred through a specified covariate intermediate on the pathway between treatment and outcome. Such direct effects are often of primary interest in a data analysis. Unfortunately, standard methods of analysis (for example, stratification or modelling) do not, in general, produce consistent estimates of direct effects whether or not the covariate is ‘controlled’. Robins and co‐authors have proposed two methods for estimation of direct effects applicable when reliable information is available on the covariate. We propose a third approach for reducing bias: data restriction. By restricting the analysis to strata of the data in which the effect of treatment on the covariate is small, we can (under certain assumptions) reduce bias in estimating treatment's direct effect. We discuss these points with reference to difference and ratio measures of treatment effect. The approach will sometimes be applicable even with an unmeasured or poorly measured covariate. We illustrate these points with data from an observational study of the effect of hormone replacement therapy on breast cancer. © 1998 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.