Journal of Time Series Analysis

AN APPLICATION OF THE SCHUR‐COHN ALGORITHM TO TIME SERIES ANALYSIS

Journal Article

Abstract. Standard least squares analysis of autoregressive moving‐average (ARMA) processes with errors‐in‐variables entails the construction of a new set of parameters which are functions of the original ARMA parameters, and requires that derivatives of these new parameters of order three or less with respect to the ARMA parameters exist and be bounded. The boundedness of these derivatives in turn depends critically on the nonsingularity of a matrix B which is a function of the ARMA parameters via the new parameters in the model. A particular version of the classical Schur–Cohn algorithm enables us to establish this nonsingularity.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.