Journal of Time Series Analysis

RATE OPTIMAL SEMIPARAMETRIC ESTIMATION OF THE MEMORY PARAMETER OF THE GAUSSIAN TIME SERIES WITH LONG‐RANGE DEPENDENCE

Journal Article

There exist several estimators of the memory parameter in long‐ memory time series models with the spectrum specified only locally near zero frequency. In this paper we give an asymptotic lower bound for the minimax risk of any estimator of the memory parameter as a function of the degree of local smoothness of the spectral density at zero. The lower bound allows one to evaluate and compare different estimators by their asymptotic behaviour, and to claim the rate optimality for any estimator attaining the bound. A log‐periodogram regression estimator, analysed by Robinson (Log‐periodogram regression of time series with long range dependence. Ann. Stat. 23 (1995), 1048‐‐72), is then shown to attain the lower bound, and is thus rate optimal.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.