Econometrica

Inductive Inference: An Axiomatic Approach

Journal Article

A predictor is asked to rank eventualities according to their plausibility, based on past cases. We assume that she can form a ranking given any memory that consists of finitely many past cases. Mild consistency requirements on these rankings imply that they have a numerical representation via a matrix assigning numbers to eventuality–case pairs, as follows. Given a memory, each eventuality is ranked according to the sum of the numbers in its row, over cases in memory. The number attached to an eventuality–case pair can be interpreted as the degree of support that the past case lends to the plausibility of the eventuality. Special instances of this result may be viewed as axiomatizing kernel methods for estimation of densities and for classification problems. Interpreting the same result for rankings of theories or hypotheses, rather than of specific eventualities, it is shown that one may ascribe to the predictor subjective conditional probabilities of cases given theories, such that her rankings of theories agree with rankings by the likelihood functions.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.