Econometrica

the Block–Block Bootstrap: Improved Asymptotic Refinements

Journal Article

The asymptotic refinements attributable to the block bootstrap for time series are not as large as those of the nonparametric iid bootstrap or the parametric bootstrap. One reason is that the independence between the blocks in the block bootstrap sample does not mimic the dependence structure of the original sample. This is the join‐point problem.

In this paper, we propose a method of solving this problem. The idea is not to alter the block bootstrap. Instead, we alter the original sample statistics to which the block bootstrap is applied. We introduce block statistics that possess join‐point features that are similar to those of the block bootstrap versions of these statistics. We refer to the application of the block bootstrap to block statistics as the block–block bootstrap. The asymptotic refinements of the block–block bootstrap are shown to be greater than those obtained with the block bootstrap and close to those obtained with the nonparametric iid bootstrap and parametric bootstrap.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.