Econometrica

Twicing Kernels and a Small Bias Property of Semiparametric Estimators

Journal Article

The purpose of this note is to show how semiparametric estimators with a small bias property can be constructed. The small bias property (SBP) of a semiparametric estimator is that its bias converges to zero faster than the pointwise and integrated bias of the nonparametric estimator on which it is based. We show that semiparametric estimators based on twicing kernels have the SBP. We also show that semiparametric estimators where nonparametric kernel estimation does not affect the asymptotic variance have the SBP. In addition we discuss an interpretation of series and sieve estimators as idempotent transformations of the empirical distribution that helps explain the known result that they lead to the SBP. In Monte Carlo experiments we find that estimators with the SBP have mean‐square error that is smaller and less sensitive to bandwidth than those that do not have the SBP.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.