Statistics in Medicine

Estimating trends and seasonality in coronary heart disease

Journal Article

Abstract

We present two methods of estimating the trend, seasonality and noise in time series of coronary heart disease events. In contrast to previous work we use a non‐linear trend, allow multiple seasonal components, and carefully examine the residuals from the fitted model. We show the importance of estimating these three aspects of the observed data to aid insight of the underlying process, although our major focus is on the seasonal components. For one method we allow the seasonal effects to vary over time and show how this helps the understanding of the association between coronary heart disease and varying temperature patterns. Copyright © 2004 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.