International Statistical Review

Using Remote Sensing for Agricultural Statistics

Journal Article


Remote sensing can be a valuable tool for agricultural statistics when area frames or multiple frames are used. At the design level, remote sensing typically helps in the definition of sampling units and the stratification, but can also be exploited to optimise the sample allocation and size of sampling units. At the estimator level, classified satellite images are generally used as auxiliary variables in a regression estimator or for estimators based on confusion matrixes. The most often used satellite images are LANDSAT‐TM and SPOT‐XS. In general, classified or photo‐interpreted images should not be directly used to estimate crop areas because the proportion of pixels classified into the specific crop is often strongly biased. Vegetation indexes computed from satellite images can give in some cases a good indication of the potential crop yield.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.