International Statistical Review

Statistical Decision Problems and Bayesian Nonparametric Methods

Journal Article

Summary

This paper considers parametric statistical decision problems conducted within a Bayesian nonparametric context. Our work was motivated by the realisation that typical parametric model selection procedures are essentially incoherent. We argue that one solution to this problem is to use a flexible enough model in the first place, a model that will not be checked no matter what data arrive. Ideally, one would use a nonparametric model to describe all the uncertainty about the density function generating the data. However, parametric models are the preferred choice for many statisticians, despite the incoherence involved in model checking, incoherence that is quite often ignored for pragmatic reasons. In this paper we show how coherent parametric inference can be carried out via decision theory and Bayesian nonparametrics. None of the ingredients discussed here are new, but our main point only becomes evident when one sees all priors—even parametric ones—as measures on sets of densities as opposed to measures on finite‐dimensional parameter spaces.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.