Australian & New Zealand Journal of Statistics

Applications: Posterior Distributions for the Gini Coefficient Using Grouped Data

Journal Article

When available data comprise a number of sampled households in each of a number of income classes, the likelihood function is obtained from a multinomial distribution with the income class population proportions as the unknown parameters. Two methods for going from this likelihood function to a posterior distribution on the Gini coefficient are investigated. In the first method, two alternative assumptions about the underlying income distribution are considered, namely a lognormal distribution and the Singh–Maddala (1976) income distribution. In these cases the likelihood function is reparameterized and the Gini coefficient is a nonlinear function of the income distribution parameters. The Metropolis algorithm is used to find the corresponding posterior distributions of the Gini coefficient from a sample of Bangkok households. The second method does not require an assumption about the nature of the income distribution, but uses (a) triangular prior distributions, and (b) beta prior distributions, on the location of mean income within each income class. By sampling from these distributions, and the Dirichlet posterior distribution of the income class proportions, alternative posterior distributions of the Gini coefficient are calculated.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.