Australian & New Zealand Journal of Statistics

An Affine‐Invariant Generalization of the Wilcoxon Signed‐Rank Test for the Bivariate Location Problem

Journal Article

Abstract

This paper proposes an affine‐invariant test extending the univariate Wilcoxon signed‐rank test to the bivariate location problem. It gives two versions of the null distribution of the test statistic. The first version leads to a conditionally distribution‐free test which can be used with any sample size. The second version can be used for larger sample sizes and has a limiting χ22 distribution under the null hypothesis. The paper investigates the relationship with a test proposed by Jan & Randles (1994). It shows that the Pitman efficiency of this test relative to the new test is equal to 1 for elliptical distributions but that the two tests are not necessarily equivalent for non‐elliptical distributions. These facts are also demonstrated empirically in a simulation study. The new test has the advantage of not requiring the assumption of elliptical symmetry which is needed to perform the asymptotic version of the Jan and Randles test.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.