Australian & New Zealand Journal of Statistics

Ancestral Inference in Population Genetics Models with Selection (with Discussion)

Journal Article

Summary

A new algorithm is presented for exact simulation from the conditional distribution of the genealogical history of a sample, given the composition of the sample, for population genetics models with general diploid selection. The method applies to the usual diffusion approximation of evolution at a single locus, in a randomly mating population of constant size, for mutation models in which the distribution of the type of a mutant does not depend on the type of the progenitor allele; this includes any model with only two alleles. The new method is applied to ancestral inference for the two‐allele case, both with genic selection and heterozygote advantage and disadvantage, where one of the alleles is assumed to have resulted from a unique mutation event. The paper describes how the method could be used for inference when data are also available at neutral markers linked to the locus under selection. It also informally describes and constructs the non‐neutral Fleming–Viot measure‐valued diffusion.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.