Australian & New Zealand Journal of Statistics

A Lack‐of‐Fit Test for Heteroscedastic Regression Models via Cosine‐Series Smoothers

Journal Article


In this paper, a test is derived to assess the validity of heteroscedastic nonlinear regression models by a non‐parametric cosine regression method. For order selection, the paper proposes a data‐driven method that uses the parametric null model optimal order. This method yields a test that is asymptotically normally distributed under the null hypothesis and is consistent against any fixed alternative. Simulation studies that test the lack of fit of a generalized linear model are conducted to compare the performance of the proposed test with that of an existing non‐parametric kernel test. A dataset of esterase levels is used to demonstrate the proposed method in practice.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.