Australian & New Zealand Journal of Statistics

Theory & Methods: A New Characterization and Estimation of the Zero–bias Bandwidth

Journal Article

It is well established that bandwidths exist that can yield an unbiased non–parametric kernel density estimate at points in particular regions (e.g. convex regions) of the underlying density. These zero–bias bandwidths have superior theoretical properties, including a 1/n convergence rate of the mean squared error. However, the explicit functional form of the zero–bias bandwidth has remained elusive. It is difficult to estimate these bandwidths and virtually impossible to achieve the higher–order rate in practice. This paper addresses these issues by taking a fundamentally different approach to the asymptotics of the kernel density estimator to derive a functional approximation to the zero–bias bandwidth. It develops a simple approximation algorithm that focuses on estimating these zero–bias bandwidths in the tails of densities where the convexity conditions favourable to the existence of the zerobias bandwidths are more natural. The estimated bandwidths yield density estimates with mean squared error that is O(n–4/5), the same rate as the mean squared error of density estimates with other choices of local bandwidths. Simulation studies and an illustrative example with air pollution data show that these estimated zero–bias bandwidths outperform other global and local bandwidth estimators in estimating points in the tails of densities.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.