Australian & New Zealand Journal of Statistics

Theory & Methods: An Optimal Multivariate Stratified Sampling Design Using Dynamic Programming

Journal Article

Numerous optimization problems arise in survey designs. The problem of obtaining an optimal (or near optimal) sampling design can be formulated and solved as a mathematical programming problem. In multivariate stratified sample surveys usually it is not possible to use the individual optimum allocations for sample sizes to various strata for one reason or another. In such situations some criterion is needed to work out an allocation which is optimum for all characteristics in some sense. Such an allocation may be called an optimum compromise allocation. This paper examines the problem of determining an optimum compromise allocation in multivariate stratified random sampling, when the population means of several characteristics are to be estimated. Formulating the problem of allocation as an all integer nonlinear programming problem, the paper develops a solution procedure using a dynamic programming technique. The compromise allocation discussed is optimal in the sense that it minimizes a weighted sum of the sampling variances of the estimates of the population means of various characteristics under study. A numerical example illustrates the solution procedure and shows how it compares with Cochran's average allocation and proportional allocation.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.