Quality and Reliability Engineering International

Construction and Optimality of a Special Class of Balanced Designs

Journal Article


The use of balanced designs is generally advisable in experimental practice. In technological experiments, balanced designs optimize the exploitation of experimental resources, whereas in marketing research experiments they avoid erroneous conclusions caused by the misinterpretation of interviewed customers. In general, the balancing property assures the minimum variance of first‐order effect estimates. In this work the authors consider situations in which all factors are categorical and minimum run size is required. In a symmetrical case, it is often possible to find an economical balanced design by means of algebraic methods. Conversely, in an asymmetrical case algebraic methods lead to expensive designs, and therefore it is necessary to adopt heuristic methods. The existing methods implemented in widespread statistical packages do not guarantee the balancing property as they are designed to pursue other optimality criteria. To deal with this problem, the authors recently proposed a new method to generate balanced asymmetrical designs aimed at estimating first‐ and second‐order effects. To reduce the run size as much as possible, the orthogonality cannot be guaranteed. However, the method enables designs that approach the orthogonality as much as possible (near orthogonality). A collection of designs with two‐ and three‐level factors and run size lower than 100 was prepared. In this work an empirical study was conducted to understand how much is lost in terms of other optimality criteria when pursuing balancing. In order to show the potential applications of these designs, an illustrative example is provided. Copyright © 2006 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.