Journal of Time Series Analysis

A Hierarchical Approach to Covariance Function Estimation for Time Series

Journal Article

The covariance function in time series models is typically modelled via a parametric family. This ensures straightforward best linear prediction while maintaining positive‐definiteness of the covariance function. We suggest an alternative approach, which will result in data‐determined shrinkage towards this parametric model. Positive‐definiteness is maintained by carrying out the shrinkage in the spectral domain. We offer both a fully Bayesian hierarchical approach and an approximate hierarchical approach that will be much simpler computationally. These are implemented on the frequently analysed Canadian lynx data and compared to other models that have been fitted to these data.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.