Journal of Time Series Analysis

Gaussian Semi‐parametric Estimation of Fractional Cointegration

Journal Article

Abstract. We analyse consistent estimation of the memory parameters of a nonstationary fractionally cointegrated vector time series. Assuming that the cointegrating relationship has substantially less memory than the observed series, we show that a multi‐variate Gaussian semi‐parametric estimate, based on initial consistent estimates and possibly tapered observations, is asymptotically normal. The estimates of the memory parameters can rely either on original (for stationary errors) or on differenced residuals (for nonstationary errors) assuming only a convergence rate for a preliminary slope estimate. If this rate is fast enough, semi‐parametric memory estimates are not affected by the use of residuals and retain the same asymptotic distribution as if the true cointegrating relationship were known. Only local conditions on the spectral densities around zero frequency for linear processes are assumed. We concentrate on a bivariate system but discuss multi‐variate generalizations and show the performance of the estimates with simulated and real data.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.