Journal of Time Series Analysis

A Dependence Metric for Possibly Nonlinear Processes

Journal Article

Abstract.  A transformed metric entropy measure of dependence is studied which satisfies many desirable properties, including being a proper measure of distance. It is capable of good performance in identifying dependence even in possibly nonlinear time series, and is applicable for both continuous and discrete variables. A nonparametric kernel density implementation is considered here for many stylized models including linear and nonlinear MA, AR, GARCH, integrated series and chaotic dynamics. A related permutation test of independence is proposed and compared with several alternatives.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.