Journal of Time Series Analysis

Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning

Journal Article

Abstract.  We obtain new models and results for count data time series based on binomial thinning. Count data time series may have non‐stationarity from trends or covariates, so we propose an extension of stationary time series based on binomial thinning such that the univariate marginal distributions are always in the same parametric family, such as negative binomial. We propose a recursive algorithm to calculate the probability mass functions for the innovation random variable associated with binomial thinning. This simplifies numerical calculations and estimation for the classes of time series models that we consider. An application with real data is used to illustrate the models.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.