Canadian Journal of Statistics

Marginal information for expectation parameters

Journal Article

Abstract

The authors consider a special case of inference in the presence of nuisance parameters. They show that when the orthogonalized score function is a function of a statistic S, no Fisher information for the interest parameter is lost by using the marginal distribution of S rather than the full distribution of the observations. Therefore, no information for the interest parameter is recovered by conditioning on an ancillary statistic, and information will be lost by conditioning on an approximate ancillary statistic. This is the case for regular multivariate exponential families when the interest parameter is a subvector of the expectation parameter and the statistic is the maximum likelihood estimate of the interest parameter. Several examples are considered, including the 2 × 2 table.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.