Canadian Journal of Statistics

Robust estimation of the SUR model

Journal Article

Abstract

This paper proposes robust regression to solve the problem of outliers in seemingly unrelated regression (SUR) models. The authors present an adaptation of S‐estimators to SUR models. S‐estimators are robust, have a high breakdown point and are much more efficient than other robust regression estimators commonly used in practice. Furthermore, modifications to Ruppert's algorithm allow a fast evaluation of them in this context. The classical example of U.S. corporations is revisited, and it appears that the procedure gives an interesting insight into the problem.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.