Canadian Journal of Statistics

Bayesian prediction of waiting times in stochastic models

Journal Article

Abstract

The authors show how saddlepoint techniques lead to highly accurate approximations for Bayesian predictive densities and cumulative distribution functions in stochastic model settings where the prior is tractable, but not necessarily the likelihood or the predictand distribution. They consider more specifically models involving predictions associated with waiting times for semi‐Markov processes whose distributions are indexed by an unknown parameter θ. Bayesian prediction for such processes when they are not stationary is also addressed and the inverse‐Gaussian based saddlepoint approximation of Wood, Booth & Butler (1993) is shown to accurately deal with the nonstationarity whereas the normal‐based Lugannani & Rice (1980) approximation cannot, Their methods are illustrated by predicting various waiting times associated with M/M/q and M/G/1 queues. They also discuss modifications to the matrix renewal theory needed for computing the moment generating functions that are used in the saddlepoint methods.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.