Canadian Journal of Statistics

Adaptive tests of regression functions via multiscale generalized likelihood ratios

Journal Article

Abstract

Many applications of nonparametric tests based on curve estimation involve selecting a smoothing parameter. The author proposes an adaptive test that combines several generalized likelihood ratio tests in order to get power performance nearly equal to whichever of the component tests is best. She derives the asymptotic joint distribution of the component tests and that of the proposed test under the null hypothesis. She also develops a simple method of selecting the smoothing parameters for the proposed test and presents two approximate methods for obtaining its P‐value. Finally, she evaluates the proposed test through simulations and illustrates its application to a set of real data.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.