Canadian Journal of Statistics

Analyzing multivariate longitudinal binary data: A generalized estimating equations approach

Journal Article

Abstract

The authors consider regression analysis for binary data collected repeatedly over time on members of numerous small clusters of individuals sharing a common random effect that induces dependence among them. They propose a mixed model that can accommodate both these structural and longitudinal dependencies. They estimate the parameters of the model consistently and efficiently using generalized estimating equations. They show through simulations that their approach yields significant gains in mean squared error when estimating the random effects variance and the longitudinal correlations, while providing estimates of the fixed effects that are just as precise as under a generalized penalized quasi‐likelihood approach. Their method is illustrated using smoking prevention data.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.