Canadian Journal of Statistics

Theory of optimal blocking of nonregular factorial designs

Journal Article

Abstract

The authors introduce the notion of split generalized wordlength pattern (GWP), i.e., treatment GWP and block GWP, for a blocked nonregular factorial design. They generalize the minimum aberration criterion to suit this type of design. Connections between factorial design theory and coding theory allow them to obtain combinatorial identities that govern the relationship between the split GWP of a blocked factorial design and that of its blocked consulting design. These identities work for regular and nonregular designs. Furthermore, the authors establish general rules for identifying generalized minimum aberration (GMA) blocked designs through their blocked consulting designs. Finally they tabulate and compare some GMA blocked designs from Hall's orthogonal array OA(16,215,2) of type III.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.