Canadian Journal of Statistics

Approximate multivariate conditional inference using the adjusted profile likelihood

Journal Article

Abstract

The author proposes saddlepoint approximation methods that are adapted to multivariate conditional inference in canonical exponential familles. Several approaches to approximating conditional discrete distributions involve dividing an approximation to the full joint mass function, summed over tail regions of interest, by an approximate marginal density. The author first approximates this conditional likelihood by the adjusted profile likelihood, and then applies a multivariate saddlepoint approximation. He also presents formulas to aid in performing simultaneously the profiling and maximizing steps.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.