Canadian Journal of Statistics

Nonlinear mixed‐effect models with nonignorably missing covariates

Journal Article

Abstract

Nonlinear mixed‐effect models are often used in the analysis of longitudinal data. However, it sometimes happens that missing values for some of the model covariates are not purely random. Motivated by an application to HTV viral dynamics, where this situation occurs, the author considers likelihood inference for this type of problem. His approach involves a Monte Carlo EM algorithm, along with a Gibbs sampler and rejection/importance sampling methods. A concrete application is provided.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.