Canadian Journal of Statistics

Optimal sampling for repeated binary measurements

Journal Article


The authors consider the optimal design of sampling schedules for binary sequence data. They propose an approach which allows a variety of goals to be reflected in the utility function by including deterministic sampling cost, a term related to prediction, and if relevant, a term related to learning about a treatment effect To this end, they use a nonparametric probability model relying on a minimal number of assumptions. They show how their assumption of partial exchangeability for the binary sequence of data allows the sampling distribution to be written as a mixture of homogeneous Markov chains of order k. The implementation follows the approach of Quintana & Müller (2004), which uses a Dirichlet process prior for the mixture.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.