Canadian Journal of Statistics

Marginal and association regression models for longitudinal binary data with drop‐outs: A likelihood‐based approach

Journal Article

Abstract

Longitudinal data often contain missing observations, and it is in general difficult to justify particular missing data mechanisms, whether random or not, that may be hard to distinguish. The authors describe a likelihood‐based approach to estimating both the mean response and association parameters for longitudinal binary data with drop‐outs. They specify marginal and dependence structures as regression models which link the responses to the covariates. They illustrate their approach using a data set from the Waterloo Smoking Prevention Project They also report the results of simulation studies carried out to assess the performance of their technique under various circumstances.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.